您现在的位置: 首页 > 动态 > 文章正文动态
人工智能芯片(人工智能芯片有哪些差异)
发布时间:2022-10-25 08:58 点击:次
»从影响力榜单上也可以看到这两款芯片在人工智能领域的重要地位。通用芯片可以避免专门研发定制芯片的高投入和高风险,但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而,天然存在性能、功耗等方面的瓶颈。随着人工智能应用规模的扩大,这类问题将日益突出。 »人工智能时代新计算的强大需求,正在催生出新的专用计算芯片。
»值得关注的是那些声音还没有壮大的定制芯片(TPU、寒武纪、Tesla P100 GPU)和类脑芯片(TrueNorth)。
•通用芯片的瓶颈。
•使用这类已有的通用芯片可以避免专门研发定制芯片的高投入和高风险,但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而,天然存在性能、功耗等方面的瓶颈。随着人工智能应用规模的扩大,这类问题将日益突出。
•定制芯片的性能提升非常明显。
NVIDIA 首款专门为深度学习从零开始设计的芯片Tesla P100 数据处理速度是其2014 年推出GPU 系列的12 倍。谷歌为机器学习定制的芯片TPU 将硬件性能提升至相当于按照摩尔定律发展7 年后的水平。
•类脑芯片紧密开发
人机世纪之战之后不久,IBM曝出已经研发出一款可以像大脑一样工作的计算机芯片TrueNorth(真北)。不过已经在探索人工神经元了,但是以现在的计算能力,还无法完全模拟大脑运行。
•下游需求量足够摊薄定制芯片投入的成本。
人工智能的市场空间将不仅仅局限于计算机、手机等传统计算平台,从无人驾驶汽车、无人机再到智能家居的各类家电,至少数十倍于智能手机体量的设备需要引入感知交互能力。