您现在的位置: 首页 > 动态 > 文章正文动态
一阶线性微分方程通解公式(一阶线性方程的求解公式)
发布时间:2022-10-22 05:28 点击:次
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式应用“常数变易法”求解.
∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数).